Insights into active tectonics of eastern Taiwan from analyses of geodetic and geologic data

by Wen-Jeng Huang^{1,2}, Kaj M. Johnson², Junichi Fukuda² and Shui-Beih Yu¹

1.Academia Sinica 2.Indiana University

Presenter: Wen-Jeng Huang

Tectonic Setting

M > 7 Earthquakes

(After Ching et. al., 2007)

(Ruptures according to Hsu,1962)

Three major faults

(After Ching et. al., 2007)

Vertical GPS

Horizontal GPS

Holocene Uplifted marine terraces

InSAR-inferred differential vertical motion

Vertical GPS

Holocene Uplifted marine terraces

Horizontal GPS

(Yu and Kuo, 2001)

InSAR-inferred differential vertical motion

(Hsu and Bürgmann, 2006)

Horizontal GPS

(Yu and Kuo, 2001)

Horizontal GPS

(Yu and Kuo, 2001)

Horizontal GPS

Northern Profile

Southern Profile

Vertical GPS

Horizontal GPS

Holocene Uplifted marine terraces

InSAR-inferred differential vertical motion

Buried dislocation model by Hsu et al. (2003)

Plate-block model by Johnson et al. (2005)

Plate-block Model

Plate-block Model

Plate-block Model

creep at constant resistive stress

Solving for parameters: inverting data through viscoelastic collision model

Forward problem : Interseismic and long-time velocities are solved , given model parameters

 $V_{\text{long}} = [G_{\text{block}} + G_{c}B_{\text{cancel}} + G_{f}B_{\text{forward}}].\Omega$ $V_{\text{int}} = [G_{\text{block}} + G_{c}B_{\text{cancel}} + G_{f}B_{\text{forward}} + G_{b}B_{\text{backslip}}].\Omega$

*V*_{int}: vector of interseismic geodetic data *V*_{long}: vector of long-term geologic data
G: Green function
B: corresponding matrix
Ω: vector of Euler poles

$d = g(m) + \varepsilon$

m: vector of parameters *ɛ*: vector of errors

Monte Carlo Inversion

- Metropolis method

Bayes' Theroem

constant P: probability $P(m/d) = \frac{P(d/m)P(m)}{P(d)} = \alpha P(d/m)$ constant *m*: vector of parameters d: vector of data α : constant scalar By definition $P(d / m) = C \exp[-\frac{1}{2}(d - g(m))^{T} \sum_{d}^{-1}(d - g(m))]$

C: constant scalar

P(m / d): posterior probability

Markov Chain random walk

Sample distribution

Two-fault Model

Long-term slip rate

Long-term coastal uplift rates

200

150

LVF slip rate high – badly over-predicted coastal uplift

long-term coastal uplift rates

long-term fault slip rate

uncertainty 80 120 160 200

long-term fault slip rate

slip deficit per year on Longitudinal Valley fault

(long-term slip rate minus interseismic slip rate)

1951 earthquakes surface ruptures (Hsu, 1962)

slip deficit on Longitudinal Valley fault

Conclusion

- 1. Holocene uplift rates (long-tem uplift rates) along eastern coast can only be reproduced if a significant amount of convergence is accommodated offshore on the OSF.
- 2. Including the OSF in the model reduces the estimate of long-term slip rate on the LVF by a factor of about two and changes the LVF from a nearly pure dip-slip reverse fault to an oblique reverse, left-lateral fault, consistent with independent observations.
- 3. The LVF is largely locked north of Yuli and is creeping to the south.
- 4. The transition from creeping to locked on the southern segment of LVF corresponds with the hypocenter of the 2003 Chengkung earthquake.

Thank you for your attention!

Talk Outline

- Tectonic setting and research interests
- Method
 - Forward model
 - Plate collision model
 - Inverse model
 - Inverse scheme
 - Resolution test
- Results
 - Two-fault model
 - Three-fault model
- Conclusion

M~6 Earthquakes

Plate-block model

Effect of elastic layer thickness

Viscoelastic Earthquake cyclic model

Resolution Test

Earthquake cycle

Hualien

